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Abstract The quantum theory of angular momentum and

the associated Racah–Wigner algebra of the Lie group SU(2)

have been widely used in many branches of theoretical and

applied physics, chemical physics, and mathematical phys-

ics. This paper starts with an account of the basics of such a

theory, which represents the most exhaustive framework in

dealing with interacting many-angular momenta quantum

systems. We then outline the essential features of this alge-

bra, that can be encoded, for each fixed number N = (n ? 1)

of angular momentum variables, into a combinatorial object,

the spin network graph, where vertices are associated with

finite-dimensional, binary coupled Hilbert spaces while

edges correspond to either phase or Racah transforms

(implemented by 6j symbols) acting on states in such a way

that the quantum transition amplitude between any pair of

vertices is provided by a suitable 3nj symbol. Applications of

such a combinatorial setting—both in fully quantum and in

semiclassical regimes—are briefly discussed providing

evidence of a unifying background structure.

1 Introduction

The mathematical apparatus of quantum-mechanical

angular momentum (re)coupling, developed originally to

describe spectroscopic phenomena in atomic, molecular,

optical, and nuclear physics, is embedded in modern

algebraic settings which emphasize the underlying combi-

national structure. SU(2) recoupling coefficients, or 3nj

symbols, as well as the related problems of their calcula-

tions, general properties, asymptotic limits for large entries,

play nowadays a prominent role also in quantum gravity

and quantum computing applications. We refer to the

ingredients of this theory—and possibly of its extension to

other Lie and quantum groups—by using the collective

term ‘spin networks’.

Such a combinatorial setting, illustrated in Sect. 2, can

be thought of as a sort of ‘abacus’ encoding diagramma-

tical rules encountered in quantum collision theory [30] or

even as (families of) ‘computational quantum graphs’ able

to process algorithmic problems arising in discrete mathe-

matics and theoretical physics [55].

The basic angular momentum functions, namely the

Clebsch–Gordan coefficient—or its symmetric counterpart

given by the Wigner 3j symbol—and the Racah 6j symbol,

can be easily associated with ‘classical’ hypergeometric

polynomials in one discrete variable, denoted respectively

by 3F2 and 4F3. Such functions were generalized in terms

of q-analogs [35, 51, 60] and afterwards these q-orthogonal

counterparts were identified as the 3j and 6j coefficients of

the algebra slð2;CÞq [42] (see also [37] for a general

review). It is worth recalling that the 3j symbol can be

obtained, both in the classical and in the q-deformed case,

as the asymptotic limit of the 6j symbol when three of its

six entries (not belonging to a same triad) become ‘large’ in

�h units. Thus it is not surprising that Racah and q-Racah

polynomials stand at the top of the so-called Askey and q—

Askey hierarchies, respectively [17]. Each of the other (q-

)polynomials of hypergeometric type—depending on either

a discrete or continuous variable—(dual Hahn, Jacobi,
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Hermite, etc.) fits into the proper hierarchy and can be

derived via suitable top-down limiting procedures and/or

by specializing previously unconstrained argument(s).

Semiclassical analysis—in particular the study of rela-

tionships among families, addition formulas, linearized

expressions and various types of sum rules—may look like

obscure manipulations of abstract quantities unless a

coherent, unifying interpretation arising from physical

applications could be disclosed. In the present paper, most

mathematical details on hypergeometric hierarchies are

necessarily omitted. Rather, an account on Ponzano–Regge

asymptotic formula for the 6j symbol [63] is given in Sect. 3

as a paradigmatic illustration of the deep interplay between

spin network combinatorics and special function theory, on

the one hand, and theoretical models underlying the pheno-

menology of many-body (quantum and semiclassical)

systems, on the other.

Such a unifying scenario arising from both the algebraic-

combinatorial setting and the analytical asymptotic analysis,

as been briefly anticipated in [7]. This developments are

resumed in the rest of this paper by resorting to a number of

applications, ranging from quantum chemistry and mole-

cular physics (Sect. 4) to quantum computing and discrete

quantum gravity models (Sect. 5). An outlook to current and

future developments (Sect. 6) concludes the paper.

2 Spin network graphs and combinatorics of SU(2)

recoupling theory

The basic ingredients needed for the construction of spin

network graphs are introduced in this section in a quite

formalized way, following the treatment presented in the

classic book [38] (Topic 12) (see also [55]). At a lower

technical level the reader may refer to the book [39] while

a more sophisticated approach based on category theory

can be found for instance in [49].

Consider N = (n ? 1) mutually commuting angular

momentum operators of the algebra of SU(2),

J1; J2; J3; . . .; Jnþ1 � fJig; and the corresponding com-

ponents fJiðzÞg along the quantization axis. For each

i = 1,2,...,n ? 1 the simultaneous eigenstates of the com-

plete set fJ2
i ; JiðzÞg are defined through

J2
i jjimii ¼ jiðji þ 1Þ jjimii; JiðzÞjjimii ¼ mi jjimii; ð1Þ

where we adopt the convention for which �h ¼ 1 and the

eigenvalues range over

ji ¼ 0;
1

2
;1;

3

2
; . . .; �ji�mi� ji ðin integer stepsÞ: ð2Þ

Denoting by Hji ¼: spanfjji miig the (2ji ? 1)-

dimensional Hilbert space supporting the ji-th irreducible

representation of SU(2), the tensor product

Hj1 �Hj2 �Hj3 � � � � � Hjn � Hjnþ1

¼: span fjj1m1i � � � � � jjnþ1mnþ1ig ð3Þ

represents the simultaneous eigenspace of the 2(n ? 1)

operators fJ2
i ; JiðzÞg and may be used e.g. to describe the

state of N = (n ? 1) kinematically independent particles.

To address the interacting case we have to switch to the

Wigner-coupled Hilbert spaces of the total angular

momentum operator

J1 þ J2 þ J3 þ � � � þ Jnþ1 ¼: J ð4Þ

and of its projection Jz along the quantization axis. The

corresponding quantum numbers are J and M � m1 þ m2 þ
� � � þ mnþ1ð�J�M� Jin integer stepsÞ; where the

simultaneous eigenspace of the operators J2 and Jz

J2jJMi ¼ JðJ þ 1Þ jJMi; JzjJMi ¼ M jJMi ð5Þ

turns out to be degenerate. The degeneracy is partially

removed by noticing that J2
1; J

2
2; . . .;J2

nþ1 commute with

J2 and Jz and thus j1, j2, ...,jn?1 are still good quantum

numbers (while the individual m1,m2,...,mn?1 are not).

The ket vectors jJMi in Eq. 5 could be rewritten for the

moment as jj1; j2; . . .; jnþ1; JMi; namely in terms of

(n ? 1) ? 2 quantum numbers. The complete removal of

the degeneracy can be achieved by introducing a new set

of (n - 1) Hermitean operators—commuting with each

other and with the previous ones—in order to get a total

amount of 2(n ? 1) quantum numbers (this number

equals the number of operators needed to specify the

eigenstates in the factorized Hilbert space (Eq. 3). The

most effective way to reach the goal is to consider

binary coupling schemes (binary parenthesization) within

the sequence J1 þ J2 þ J3 þ � � � þ Jnþ1 ¼ J:

As a simple example, consider the case (n ? 1) = 3: the

binary coupling schemes are ðJ1 þ J2Þ þ J3 ¼ J; J1 þ
ðJ2 þ J3Þ ¼ J; ðJ1 þ J3Þ þ J2 ¼ J: Then each binary cou-

pling gives rise—by using the Clebsch–Gordan series of

SU(2)—to an intermediate angular momentum operator

whose quantum number will be added to the set

fj1; j2; . . .; jnþ1; JMg: In the case (n ? 1) = 3 the first

coupling scheme (J1 ? J2) ? J3 = J splits into

ðJ1 þ J2Þ ¼ J12; J12 þ J3 ¼ J ð6Þ

with jj1 � j2j � j12� j1 þ j2 and J = j12?j3, while the

second coupling scheme J1 ? (J2 ? J3) = J is specified

by

ðJ2 þ J3Þ ¼ J23; J1 þ J23 ¼ J ð7Þ

with jj2 � j3j � j23� j2 þ j3 and J = j1 ? j23.

These alternative ‘binary coupled’ schemes are graphi-

cally represented in terms of ‘binary trees with roots’, as

shown in Fig. 1 (here we agree to associate spin labels to
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the edges of the trees, and not to vertices as done for

instance in Appendix A of [55]).

Coming to the general case, a simple counting argument

shows that the number of intermediate angular variables

arising from a complete binary parenthesization on Eq. 4 is

(n - 1), plus an external bracket (...)J, thus removing

completely the degeneracy in the JM space (Eq. 5). More

in details, given a particular binary bracketing structure

(keeping fixed for the moment the sequence of incoming

angular momenta fJ1; J2; J3; . . .; Jnþ1g), we get a unique

set of mutually commuting operators K1;K2;K3; . . .;Kn�1

with quantum numbers k1; k2; k3; . . .; kn�1 respectively,

each running over a suitable finite range (cfr. what has be

done in Eqs. 6 and 7). An explicit example of such a

bracketing structure is given by the sequential coupling,

represented graphically in Fig. 2. The associated Hilbert

space, of dimension 2J ? 1, is given by the span of the

basis eigenvectors fjj1; j2; j3; . . .; jnþ1; k1; . . .; kn�1; JMi;
�J�M� Jg; (here both the sequences of quantum num-

bers j’s and k’s are ordered).

In order to deal with generic binary arrangements of the

incoming variables j’s and at the same time of the resulting

(partially ordered) set of intermediate k’s, we adopt

notation

fj½j1; j2; j3; . . .; jnþ1�b; kb
1; k

b
2; . . .; kb

n�1; JMi; �J�M� Jg
¼ HJ

n ðbÞ ¼
:

span f jb; JMing ; ð8Þ

where the string inside ½j1; j2; j3; . . .; jnþ1�b is not necessarily

ordered, b indicates the current binary bracketing structure

and the k’s are uniquely associated with the chain of

pairwise couplings given by b: The combinatorial structure

underlying these binary coupled Hilbert spaces (for fixed n

and for any J) is actually provided by the set of all possible

rooted labeled binary trees (see Appendix A of [55] for

more details).1

According to the recoupling theory of angular momenta

[73, 70] and [38] (Topic 12), the most general unitary

transformation between two computational states charac-

terized by binary coupling schemes b and b0

j½j1; j2; j3; . . .; jnþ1�b; kb
1; k

b
2; . . .; kb

n�1; JMi

�! j½j1; j2; j3; . . .; jnþ1�b
0
; kb0

1 ; k
b0

2 ; . . .; kb0

n�1; JMi ð10Þ

is implemented by a recoupling coefficient of SU(2) (or 3nj

symbol) denoted by the shorthand notations

U3nj
kb

1 . . . kb
n�1

kb0

1 . . . kb0

n�1

� �
¼: U3nj ½b; b0�; ð11Þ

where the variables {j}, fkbg; fkb0 g; J;M appearing in

states (Eq. 10) have been partially or totally dropped. Then

such coefficients represent generalized matrix elements

with multiple indices given by the two sets (kb
1. . .kb

n�1)

(kb0
1 . . .kb0

n�1) and the square modulus jU3nj ½b; b0�j2 gives the

probability that a quantum system prepared in the state

jb; JMin will be measured in the state jb0; JMin (note that

U3nj is a ‘reduced’ tensor operator, namely it does not

involve changes in magnetic quantum numbers in view of

the Wigner–Eckart theorem).

For each fixed n there exist inequivalent types of 3nj

symbols: one 6j symbol, one 9j, two 12j symbols, five

Fig. 1 Alternative, pairwise couplings of three angular momentum

operators (which sum up to give a definite total angular momentum)

are naturally associated with rooted binary trees. The Hilbert spaces

associated with the above binary coupling schemes, although

mathematically isomorphic, are not physically equivalent, as far as

they correspond to (partially) different complete sets of physical

observables, namely fJ2
1; J

2
2; J

2
12; J

2
3; J

2; Jzg and fJ2
1; J

2
2; J

2
3; J

2
23;

J2; Jzg; respectively (in particular, J2
12 and J2

23 cannot be measured

simultaneously)

Fig. 2 Sequential binary coupling scheme of (n ? 1) angular

momenta and labelling of intermediate nodes. The associated Hilbert

space, of dimension 2J ? 1, is given by the span of the basis

eigenvectors fjj1; j2; j3; . . .; jnþ1; k1; . . .; kn�1; JMi;�J�M� Jg; (here

both the sequences of quantum numbers j’s and k’s are ordered)

1 Recall that any binary coupled basis can be related to the factorized

basis (Eq. 3): for instance a vector in the basis associated with the

splitting (Eq. 6) can be expanded through

jj1; j2; j3; j12; JMi
¼
X

m1m2m3

CJM
j12m12 j3m3

Cj12m12

j1m1j2m2
jj1m1i � jj2m2i � jj3m3i ð9Þ

where there appear two SU(2) Clebsch–Gordan coefficients. This

expression can obviously be inverted, providing one factorized basis

vector in terms of a combination of binary coupled states in the JM-

representation.
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15j’s, eighteen 18j’s etc. [73]. The recoupling coefficients

classified as type I and type II may be expressed through

single sums of products of 6j symbols, while types III, IV,

V,... (appearing for n C 5) may be represented either by

single sums of more complex products of 6j and 9j symbols

or by multiple sums of products of symbols of lower

orders. In the present context we do not really need any

such expressions since we take advantage of the result

proved in [38] (Topic 12) and summarized as follows.

For each n any U3nj ½b; b0� is the composition of (a finite

number of) two elementary unitary transformations,

namely

• Racah transform

R : j. . .ððabÞdcÞf . . .; JMi 7! j. . .ðaðbcÞeÞf . . .; JMi; ð12Þ

• Phase transform

U : j. . .ðabÞc. . .; JMi7! j. . .ðbaÞc. . .; JMi; ð13Þ

where Latin letters a,b,c,... are used here to denote both

incoming (j’s in the previous notation) and intermediate

(k’s) spin quantum numbers.

The explicit expression of Eq. 12 is

jðaðbcÞeÞf ; Mi ¼
X

d

ð�1Þaþbþcþf ½ð2d þ 1Þð2eþ 1Þ�1=2

�
a b d

c f e

� �
jððabÞdcÞf ; Mi; ð14Þ

where there appears the Racah–Wigner 6j symbol of SU(2)

and the weights (2d ? 1), (2e ? 1) are the dimensions of

the irreps labeled by d and e, respectively2

Finally, the phase transform (Eq. 13) reads

j. . .ðabÞc. . .; JMi ¼ ð�1Þaþb�c j. . .ðbaÞc. . .; JMi: ð15Þ

The above elementary unitary operations satisfy suitable

algebraic relations, reflecting the structure of the Racah–

Wigner algebra. The Biedenharn–Elliott identity reads

X
x

ð�ÞRþxð2xþ 1Þ
a b x

c d p

� �
c d x

e f q

� �
e f x

b a r

� �

¼
p q r

e a r

� �
p q r

f b c

� �
;

ð16Þ

while the Racah identity is expressed as

X
x

ð�Þpþqþxð2xþ 1Þ a b x
c d p

� �
c d x
a b q

� �

¼ a c d
b d p

� �
; ð17Þ

Here the spin variables {a, b, c,...,x} run over

f0; 1
2
; 1; 3

2
; . . .g and must satisfy suitable triangular

inequalities inside each 6j symbol (otherwise the symbol

itself would vanish). The factor (2x ? 1) is the dimension

of the representation labeled by x, the sum over x is

constrained by triangular conditions quoted above, and R in

the phase factor of the first identity amounts to

(a ? b ? c ? d ? e ? f ? p ? q ? r).

Note that these identities, together with the orthogo-

nality relation

X
x

ð2xþ 1Þ a b x
c d p

� �
c d x
a b q

� �
¼ dpq

ð2xþ 1Þ ; ð18Þ

define uniquely the Racah–Wigner 6j symbol, which in

turn represents the hypergeometrical polynomial at the top

of Askey hierarchy [51] as recalled in the Introduction.

The standard graphical representation of 6j (as well as

3nj) symbols as Yutsis cubic graphs [73] makes it manifest

the combinatorial structure of the objects obtained by

joining the edges of two binary trees with the same labels.

In particular, referring to the case of three angular

momenta of Fig. 1, the associated 6j recoupling coefficient

is shown in Fig. 3 (where edges are relabeled as j1, ..., j6).

The 9j symbol (or Fano X-coefficient) arises naturally

when considering two quantum systems described by pure

SU(2) angular momentum states endowed with either weak

or strong spin-orbit interactions (the corresponding hamil-

tonians represent two-body conservative interactions and

are rotationally invariant operators, namely the magnetic

quantum numbers are not active owing to Wigner–Eckart

theorem). The two alternative ways of pairing s1, s2,l1,l2,

traditionally referred to as ls and jj couplings, can be

encoded into suitable ‘binary trees’ whose recoupling

Fig. 3 The 6j graphical representation as a complete quadrilateral.

The tetrahedral symmetry encoded into the symbol makes it possible

to think also of a tetrahedron embedded in Euclidean 3-space with the

faces corresponding to the triads in the symbol

2 In view of the previous footnote, the 6j symbol may be expressed as

a sum over magnetic quantum numbers of the product of four

Clebsch–Gordan coefficients with entries in the set {a,b,c,d,e,f;
ma,mb,mc,md,me,mf}, where ma (-a B ma B a in integer steps) is

associated with the spin variable a (and similarly for the others), see

[70]. The numerical value of the 6j symbol depends on normalization:

we are tacitly assuming through the whole paper the standard

Condon–Shortley conventions.
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matrix elements (indeed, the 9j coefficient) can be associ-

ated with the 3-valent graph depicted in Fig. 4.

With the above examples in mind, it should be clear that

binary coupled Hilbert spaces and 3nj symbols represent

the basic ingredients of a combinatorial construction

(leading to general spin network graphs) for each fixed

integer n (n C 2). The ‘network’ structure is denoted by

Gn(V,E), where V and E are the vertex and edge sets of an

abstract graph Gn. Both the vertices and the edges (arcs

connecting pairs of vertices) of Gn(V, E) are thus ‘deco-

rated’ by algebraic objects from SU(2)-representation

theory introduced above. More precisely, the vertices are in

1–1 correspondence with the set of computational Hilbert

spaces HJ
nðb) introduced in

V � fvðbÞg  ! fHJ
nðbÞg ð19Þ

while the edge set E = {e} of Gn(V, E) is a subset of the

Cartesian product (V 9 V) such that an (undirected) arc

between two vertices vðbÞ and vðb0Þ
eðb; b0Þ ¼: ðvðbÞ; vðb0ÞÞ 2 ðV � VÞ ð20Þ

exists if, and only if, the underlying Hilbert spaces are

related to each other by one of elementary unitary

operations defined in Eqs. 12 and 13. The resulting

networks are 3-valent (cubic) graphs whose cardinality

(number of vertices |V|) is given by the so-called quadruple

factorial number

jVj ¼ Ĉn �
ð2nÞ!

n!
¼ ðnþ 1Þ!Cn; ð21Þ

where Cn is the n-th Catalan number. In Fig. 5 the graph

G3 is depicted, where continuous lines correspond to Racah

transforms and dashed lines are multiplicative phase fac-

tors. Each pentagonal plaquette encodes the Biedenharn–

Elliott identity (Eq. 16), while hexagonal plaquettes are

associated with Racah identity (Eq. 18) (the oveall phase

factor in the latter can be split into three factors, each

corresponding to a dashed edge of the plaquette).

3 Asymptotic of spin networks and their semiclassical

limits

According to Bohr correspondence principle, classical

concepts become increasingly valid in regimes where all

(or just a few) quantum numbers are ‘large’ (as will be

discussed in Sect. 4, such regimes are quite commonly

encountered in every-day analysis of atomic and molecular

dynamical processes).

In handling with angular momenta variables measured

in units of �h; the classical limit �h! 0 implies in particular

that, for finite angular momenta, the j-quantum numbers

and the magnetic ones are much larger than one.

For what concerns in particular pure angular momentum

binary coupled states introduced in Eq. 8 of Sect. 2, when

approaching classical limit all the components of the vector

operators {Ji (i = 1,2,...,n ? 1), J} are confined to nar-

rower ranges around specific values. Thus geometrical

concepts typical of the semiclassical vector model arise

naturally and the corresponding physical quantities have to

be thought as averaged out. On the other hand, Racah

transform (Eq. 12) admits well defined asymptotic limits,

whose absolute squares (probabilities) correspond to clas-

sical limits of the related physical quantities.

Following [63, 67, 68] and [38] (Topic 9) (where a self

contained treatment of various asymptotics of angular

momentum functions is given, together with the list of

original references), consider the case when all the six

angular momenta in the 6j become large. Recall also that

l

l1

j1

j2

s2

s

j

s1

l2

Fig. 4 The Yutsis graph associated with the 9j symbol. Labels

comply with the classic example of the ls and jj coupling schemes

Fig. 5 The spin network graph {G3 for (n ? 1) = 4 incoming

angular momenta (labels are dropped for simplicity, see [30]). Notice

that there appears only one half of the complete graph that would have

Ĉ3 ¼ 120 vertices

Theor Chem Acc (2009) 123:237–247 241
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the square of the symbol has the limiting value given by the

Wigner formula

a b d
c f e

� �
� 1

12pV
ð22Þ

where V is the Euclidean volume of the tetrahedron formed

by the six angular momentum ‘vectors’ (cfr, Fig. 3).

A major breakthrough in semiclassical analysis is pro-

vided by the Ponzano–Regge asymptotic formula for the 6j

symbol [63]

a b d
c f e

� �
� 1ffiffiffiffiffiffiffiffiffiffiffi

24pV
p exp i

X6

r¼1

‘rhr þ
p
4

 !( )
ð23Þ

where the limit is taken for all entries 	1 (recall that

�h ¼ 1) and ‘r � jr þ 1=2 with {jr} = {a,b,c,d,e,f}. V is the

Euclidean volume of the tetrahedron with edges of lengths

f‘rg; calculated by using the Cayley determinant (note the

shift j! jþ 1=2 with respect to the variables employed in

calculating the volume in Eq. 22 and finally hr is the angle

between the outer normals to the faces which share the

edge ‘r:

The probability amplitude (Eq. 23) has the form of a

semiclassical wave function since the factor 1=
ffiffiffiffiffiffiffiffiffiffiffi
24pV
p

is

slowly varying with respect to the spin variables, while the

exponential is a rapidly oscillating dynamical phase (such

behavior complies with Wigner’s formula (Eq. 22).

Moreover, according to Feynman path sum interpretation

of quantum mechanics, the argument of the exponential

represents a classical action, and indeed it can be read asP
p _q for pairs (p,q) of canonical variables (angular

momenta and conjugate angles). A sophisticated analysis

of asymptotic limits of coupling and recoupling coeffi-

cients based on the theory of quantum and semiclassical

integrable systems can be found in [33].

Another interesting issue—arising in connection with

the interpretation of spin networks as computational

quantum graphs—concerns the phenomenon of disenta-

glement. According to definitions given in Sect. 2, one of

the main features of states belonging to the binary coupled

Hilbert spaces (Eq. 8) is to represent effectively ‘entan-

gled’ quantum states (namely states that cannot be reduced

to a product of states containing quantum numbers of the

individual components as in Eq. 3. Recall also that the 6j

symbol (Eq. 12), being a transition amplitude, takes care of

the fact that the operators J2
d and J2

e (with quantum num-

bers d and e respectively) do not belong to the same set of

mutually commuting operators and thus cannot be mea-

sured simultaneously. However, in the semiclassical limit

given in Eq. 23 the six entries of the 6j symbol appear on

the same footing, a feature that can be interpreted as a

‘disentanglement’ of the underlying ‘semiclassical’ spin

networks.

In [5] the first nontrivially entangled network given by

the 9j symbol (Fig. 4) is addressed. The basics of asymp-

totic approximations when some of the entries are large are

presented and numerical calculations which illustrate the

passage to the semiclassical limit are carried out. The

semiclassical analysis of such a symbol is more compli-

cated with respect to Ponzano–Regge case (Eq. 23), but

nevertheless the general features described above, namely

the occurrence of disentangling and the discrete–conti-

nuum transition, are made manifest. The analytical and

numerical study of semiclassical expansions of 3nj symbols

for n [ 2, as well as of different types of asymptotics (in

which only a few variables are large, while the other ones

are kept ‘quantized’), represents a major challenge not only

in the framework of the formal theory of hypergeometric

polynomials and related hierarchies [51], but also in view

of applications to specific physical problems, to be dis-

cussed next.

4 Molecular Physics and quantum chemistry

4.1 Molecular spectroscopy and atomic collisions:

Hund’s cases

A presentation of angular momentum theory from the

viewpoint of these applications, is given by Zare [74]. The

theory developed about thirty years ago in [31] dealt with

five alternative representations for the quantum-mechanical

close-coupling formulation [14, 31, 32] of the motion along

the internuclear distance of a vibrating diatomic molecule

or colliding atoms having internal (spin and/or electronic)

angular momenta. This unified frame transformation

approaches of atomic collision theory and concepts of

molecular spectroscopy, is originally due to Hund. The

physical picture and the relevant nomenclature are

reviewed in [27], see also [28]. Explicitly [24], starting

from a sum rule equivalent to the Biedenharn–Elliott

relation (a pentagonal closed path on the abacus of Fig. 5,

see also [30] and [7]), we obtain the definition of a 6j

symbol as a sum of four 3j symbols by taking a proper

limit, since one angular momentum is much larger than the

others [27]. The coupling schemes of four angular

momenta are illustrated in [27] as the basic ingredients

underlying the classification of the five Hund cases and the

relationships among representations. It was shown that the

transition from one coupling scheme to another is per-

formed by an orthogonal transformation whose matrix

elements can be written in terms of 6j symbols. In the

pentagonal arrangement of five alternative coupling

schemes for four angular momenta (represented by the

tree-like graphs at the vertices) [24], connections (the sides
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of the pentagon) are realized by orthogonal matrices and

are related to 6j symbols. This was the archetype for the

abacus in Fig. 5, see also Fig. 1 of [7] and [30]. Recent

extensions of this approach has shown that in a general

theory of interacting open shell atoms, 3nj symbols up to

n = 6 occur [52].

4.2 Hyperquantization algorithm

An important message that we have learned from work

reviewed in Sect. 1 is the view that a continuous variable

limit is obtained at high angular momenta from the discrete

structure typical of quantum mechanics. The opposite

viewpoint can be considered as well, namely the

semiclassical limit may describe a continuous structure,

and quantum angular momentum algebra provides

discretization.

The search for both alternative reference frames and

angular momentum coupling schemes has been a major

challenge in quantum mechanics since its origin, and

tranformations among them are represented by vector–

coupling and recoupling coefficients, respectively. The

relevant equations can then be formulated in terms of

quantum numbers, which approximately correspond to

constants of motion of the systems under study. Funda-

mental advances have been achieved over the years within

this framework: in the last Fifties Jacob and Wick intro-

duced the helicity formalism, widely used for the

theoretical treatment of a variety of collisional problems;

extending Hund’s introduction of alternative coupling

schemes for a diatomic molecule carrying electronic, spin,

and rotational angular momenta (See Sect. 1). These

developments fit into the frame transformation theory

pioneered by Fano and coworkers in the Seventies.

Indeed, for general anisotropic interaction, discretization

procedures can be introduced by exploiting Racah algebra,

which fosters the introduction of alternative coupling

schemes labeled by ‘artificial’ quantum numbers. This

method has been shown to provide an elegant and powerful

tool for the solution of the reactive scattering Schröndinger

equation and, at present, a considerable number of methods

have been developed in this spirit, among which the

‘hyperquantization’ algorithm, outlined in greater detail in

a number of references [22, 24, 29]. The technique relies

on the hyperspherical coordinate approach when used for

few-body processes, including rearrangement. For instance,

in a reactive triatomic process, the reaction coordinate is

represented by the hyperradius, which is a measure of the

total inertia of the system, and an adiabatic representation

of the total eigenfunction with respect to this coordinate is

adopted. In such a way, a quantization problem on the

surface of the a hypersphere (in this case the sphere in a

6-dimensional Euclidean space) must be solved for fixed

values of the hyperradius. Then coupled-channel equations

are integrated applying a standard propagation procedure.

The success of this approach is strictly dependent on the

accuracy and the effectiveness of the method used to solve

the fixed hyperradius problem. The computation of the

adiabatic eigenvalues containing detailed information on

the structure, rotations, and internal modes parametrically

in the hyperrradius is typically very demanding. The

hyperquantization algorithm exploits the peculiar proper-

ties of the discrete analogues of hyperspherical harmonics,

i.e., generalized 3j symbols or Hahn polynomials, orthog-

onal on a grid of points that span the interaction region

[21]. The computationally advantageous aspect of this

algorithm, besides the elegance of unifying under the lan-

guage of angular momentum theory the dynamical

treatment of a reaction, is the structure of the Hamiltonian

matrix: its kinetic part is simple, universal, highly sym-

metric, and sparse, while the potential displays the diagonal

form characteristic of the stereodirected representations of

the previous section. The hyperquantization algorithm,

when implemented for reactive scattering calculations [24],

allows considerable savings in memory requirements for

storage and in computing time for the building up and

diagonalization of large basis sets, exploiting the sparse-

ness and the symmetry properties of the Hamiltonian

matrix.

4.3 Reaction dynamics and quantum chemistry

Reference of these techniques iv aspects of reaction theory

[19] and of quantum chemistry [15, 16, 18, 20].

In Sect. 2, we have outlined how the concepts of ref-

erence frame transformations and of alternative angular

momentum coupling schemes in quantum mechanics lead

to different representations of the quantum scattering

matrix and provide a powerful guide for the analysis of

atomic and molecular collisions. In particular, we have

exemplified atomic and molecular elastic and inelastic

collisions, but extensions to reactive scattering are most

interesting and extensive applications have been worked

out. Dynamical calculations for the system He ? H2
? [13,

62] and for the benchmark reaction F ? H2[25, 23] have

been performed, also including fine-structure and isotopic

effects on reactivity.

Also, a new class of entrance and exit channel indices in

the scattering matrix has been worked out. Through the

hyperspherical coordinate formulation referred to in Sect.

2, the hyperrradial problem is essentially equivalent to that

of scattering from anisotropic potentials, and such a ‘‘stereo-

directed representation’’ of the scattering matrix can be

used to derive information about the stereodynamincs of an

atom–diatom reaction. A quantity that can be reconducted

to properties measured in beam experiments on oriented
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molecules is the reaction probabilitiy as a function of the

steric quantum number (see e.g. [28]).

Since present quantum-mechanical calculations are

becoming feasible for reactive encounters on realistic

potential energy surfaces (the hyperquatization algorithm

provides an efficient machinery in this direction), stereo-

dynamical properties exploiting the stereodirected

representation have been reported, specifically for the

reaction of HF with Li [2, 3] and of F with H2 [1].

Further perspectives concerning the extension of angular

momentum theory to hyperspaces and the use of modern

advances in the theory of orthogonal polynomials of a

discrete variable have been reviewed [11]. Among appli-

cations, it is worth mentioning the possibility of

representing polarization parameters by ‘discrete’ multi-

pole moments [4, 6] and potential energy surfaces by

orthogonal discrete basis sets [12].

The study of asymptotic expansions of 3nj symbols for

n [ 2, as well as of different types of asymptotics (in which

only a few variables are large, while the other ones are kept

‘quantized’) represents a major challenge not only in the

framework of the formal theory of hypergeometric poly-

nomials and related hierarchies [51], but also in view of

applications to specific physical problems arising in con-

nections with all the topics discussed in the previous Sect. 4

and 5. A key example is the crucial occurrence of 9j symbols

in the many center problem in quantum chemistry, either in

Sturmian orbital or in momentum space approaches [8, 36].

5 Quantum gravity and quantum computing

5.1 Discretized quantum gravity

There exists an intriguing physical interpretation of the

Ponzano–Regge asymptotics (Eq. 23) once we recognize

that the expression in the exponential represents the clas-

sical Regge action [64]—namely the discretized version of

Einstein–Hilbert action of General Relativity—for the tetra-

hedron associated with the 6j symbol in the semiclassical

limit. In Fig. 3 the tetrahedral symmetry of the 6j symbol

was made manifest by associating its six entries with edges

and its four triads with faces of a tetrahedron embedded in

Euclidean 3-space.

In Regge’s approach to General Relativity, the edge

lengths of a ‘triangulated spacetime’ are taken as discrete

counterparts of the metric tensor appearing in the usual

action for gravity and angular variables (deficit angles) are

related to the scalar curvature obtained from the Riemann

tensor. Technically speaking, a Regge spacetime is a

piecewise linear (PL) manifold of dimension D dissected

into simplices, namely triangles in D = 2, tetrahedra in

D = 3, 4-simplices in D = 4 and so on. Inside each

simplex either an Euclidean or a Minkowskian metric can

be assigned: accordingly, spacetime manifolds obtained by

gluing together D-dimensional simplices acquire an overall

PL metric of Riemannian or Lorentzian signature.

‘Regge Calculus’ became in the early 1980s the starting

point for a novel approach to quantization of General

Relativity known as simplicial quantum gravity (see the

reviews [65, 72] and references therein). The quantization

procedure most commonly adopted is the Euclidean path

sum approach, namely the discretized version Feynman

path integral describing D-dimensional geometries under-

going ‘quantum fluctuations’. According to this

prescription, the asymptotic functional (Eq. 23)—to be

understood here as the semiclassical limit of a sum over

truly ‘quantum’ fluctuations—turns out to be associated

with the simplest 3-dimensional ‘spacetime’, the Euclidean

tetrahedron. The construction of the so-called Ponzano–

Regge ‘state sum’ representing the quantum partition

function of simplicial 3-gravity can be sketched as follows.

Denote by T 3ðjÞ !M3 a particular triangulation of a

closed 3-dimensional PL manifoldM3 (of fixed topology)

obtained by assigning SU(2) ‘spin variables’ {j} to the edges

of T 3: The assignment must satisfy a number of conditions

which can be more easily illustrated if we introduce the state

functional associated with T 3ðjÞ; namely

Z½T 3ðjÞ !M3; L�

¼ KðLÞ�N0
YN1

A¼1

ð�1Þ2jAwA

YN3

B¼1

/B
j1 j2 j3

j4 j5 j6

� �
B

where N0, N1, N3 denote the number of vertices, edges and

tetrahedra in T 3ðjÞ; K(L) = 4L3/3C (C an arbitrary

constant), wA¼
: ð2jA þ 1Þ is the dimension of the

irreducible representation jA of SU(2) placed on the A-th

edge, /B ¼ ð�1Þ
P6

p¼1
jp and {: : :}’s are SU(2) 6j symbols

to be associated with the tetrahedra of the triangulation.

The Ponzano–Regge state sum is obtained by summing

over triangulations corresponding to all assignments of spin

variables {j} bounded by the cut-off L, namely

ZPR½M3� ¼ lim
L!1

X
fjg� L

Z ½T 3ðjÞ !M3; L� ð25Þ

where the cut-off is formally removed by taking the limit in

front of the sum. As already noted in [63] (see also [38]

(Topic 9)), the above state sum is a topological invariant

since its value is independent of the particular triangula-

tion, namely does not change under suitable combinatorial

transformations. Quite interestingly, such ‘topological

moves’ are actually encoded algebraically into the Bie-

denharn–Elliott identity (Eq. 16) and the orthogonality

condition (Eq. 18), see e.g., [55] (Sect. 5) for more details.

Several years after Ponzano–Regge paper, a regularized

version of Eqs. 24 and 25, based on representation theory of a
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quantum deformation of the group SU(2) at q ¼
expf2pi=kg; k
 2 integer—was proposed in [69] and shown

to be a well-defined (finite) topological invariant for closed

3-manifolds. Since then there has been a renewed interest

also in the asymptotics (Eq. 23) both in connection with the

study of 3-manifold geometry [61] (and higher-dimensional

generalizations [40]) and in addressing ‘loop quantum

gravity’ models, see [66, 43] and references therein.

5.2 Quantum automata and topological invariants

In the past few years, there has been a tumultuous activity

aimed at introducing novel conceptual schemes for quantum

computing. The model of quantum simulator proposed in

[54, 55] and further discussed in [56, 57] relies on the re-

coupling theory of SU(2) angular momenta discussed in Sect.

2 and can be viewed as a generalization to arbitrary values of

the spin variables of the usual quantum-circuit model based

on ‘qubits’ and Boolean gates [59]. The basic ingredient of

such general scheme for universal quantum computing are

indeed encoded into spin network computational graphs of

the type depicted in Fig. 5. Such pictorial representation

makes it clear that the computational space of the simulator

complies with the architecture of (families of) ‘automata’.

An automaton in computer science is a graph whose nodes

encode ‘internal states’ while a link between two nodes

represents an admissibile operation or ‘transition’ between

the corresponding states (cfr. [58, 71] for an account on

quantum automaton models). According with this kind of

interpretation, a computational process on the spin network

can be associated with a directed path, namely an ordered

sequence of vertices and edges starting from an initial

quantum state, say |s [in, and ending in some set of final

states fjs [ fing:
In a series of papers [44–48] families of automata aris-

ing from the q-deformed analog of the spin network

simulator have been implemented in order to deal with

classes of computationally-hard problems in geometric

topology (topological invariants associated with knots and

with closed 3-dimensional manifolds).3

From the point of view of classical complexity theory,

computing such invariants is ‘hard’, namely could be

achieved by a classical computer only by resorting to an

exponential amount of resources. A computational process

which requires an amount of resources that grows at most

polynomially with the size of the computational problem is

referred to as ‘efficient’ (cfr. In [46] and references therein

for an account of algorithmic questions involving braid

group and topological invariants of knots).

In [45, 47], efficient (i.e., running in polynomial time)

quantum algorithms for approximating, within an arbi-

trarily small range, SU(2)q-colored polynomial invariants

of knots have been explicitly worked out. More precisely,

this algorithmic problem has been recognized to be ‘com-

plete’ in the computational class BQP (Bounded error

Quantum Polynomial). This means that each algorithmic

problem in this class can be efficiently reduced to an

evaluation of such a topological invariant for a proper knot.

In [44] such algorithms have been generalized to deal with

3-manifold invariants, while in [48] connections among

quantized geometries (Sect. 1), topological quantum field

theory and quantum computing are discussed in detail.

6 Outlook

The paper [33] deals with a systematic study of the asymp-

totics of the 3j Wigner symbol from the standpoint of

semiclassical mechanics, that is, essentially multimensional

WKB theory for integrable systems. Such asymptotics rep-

resents a matrix element connecting eigenfunctions of a pair

of integrable systems, obtained by lifting the problem of the

addition of angular momenta into the space of Schwinger’s

oscillators. A novel element is the appearance of compact

Lagrangian manifolds that are not tori, due to the fact that the

observables defining the quantum states are not commuting.

These manifolds can be quantized by generalized Bohr–

Sommerfeld rules and yield all the correct quantum numbers.

Such an approach makes it manifest the geometry of the

classical angular momentum vectors and allows efficient

methods for computing amplitude determinants in terms of

Poisson bracket. Extension of such geometrical methods to

the cases of 6j and 9j symbols are currently under study.

An interesting issue related to the previous remarks—as

well as to algorithmic problems addressed in Sect. 2—is

about ‘efficient computability’ of 3nj symbols. These ‘Yut-

sis’ cubic graphs are listed explicitly up to n = 6, and for a

fixed n there are different numbers of non-isomorphic con-

figurations, each corresponding to an inequivalent quantum

transition amplitude given by the square modulus of the

associated 3nj [73]. Open questions are: to decide whether a

trivalent graph is a Yutsis graph; to find the most efficient

way of splitting 3nj symbols into sums of products of 6j

symbols; to understand the origin of the sequence: 1, 1, 2, 5,

18, (...) given by Yutsis for the numbers of inequivalent 6j, 9j,

12j, 15j, 18j, (...) symbols, just to mention a few. In parti-

cular, the theoretical computational complexity encoded into

recurrence relations [70] involving the coefficients should be

addressed at least for the simplest cases (see [5] for a pre-

liminary numerical analysis of the 9j).

3 A topological invariant is a quantity—typically a number or a

polynomial—that depends only on the global topology of the

geometrical object and not on its local metric properties, see [61]

for definitions and original references.
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Besides q-deformed counterparts, alternative extensions

of ‘spin networks’ are studied in [26], where ‘ternary trees’

are introduced to represent graphically the basic features of

‘elliptic’ coordinate sets on S2 and S3 [Sd denotes the standard

d-sphere embedded in the (d ? 1)-dimensional Euclidean

space] and of the corresponding harmonics. Interestingly,

continuously moving along the edges of the abacus of Fig. 5

can be associated to the variation of the modulus of elliptic

functions [9, 10, 34]. In [41] symmetric couplings of three

angular momenta—instead of binary couplings as depicted

in Fig. 1—are associated with eigenstates of a ‘volume

operator’, and transition amplitudes between the latter and

the standard binary ones are worked out in the semiclassical

limits. All these kinds of extensions to non-standard coupling

and recoupling schemes and their asymptotic expansions

deserve further investigation in order to characterize the

action functionals of the underlying physical systems.

Finally, for what concerns the issues discussed in Sect. 5,

further algorithmic problems regarding (spin network-type)

quantum geometry, topological quantum field theories in

dimension 3 and associated 2-dimensional lattice models (as

well as relations among them) are currently under study [50].

The issues discussed in this paper make it manifest that

SU(2) recoupling theory provides not only powerful alge-

braic, combinatorial and analytical techniques for addressing

concrete problems in several different fields, but does rep-

resent a unifying framework. This perspective can be further

stretched to cover the theory of formal languages and asso-

ciated families of abstract (quantum) computing machines

[53].
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